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Abstract. When companies seek for the combination of products which
can constantly generate high profit, the association rule mining (ARM)
or the utility mining will not achieve such task. ARM mines frequent
itemsets without knowing the producing profit. On the other hand, the
utility mining seeks high profit items but no guarantee the frequency. In
this paper, we propose a novel utility-frequent mining model to identify
all itemsets that can generate a user specified utility in transactions, in
which the percentage of such transactions in database is not less than
a minimum support threshold. A utility-frequent itemset indicates that
such combination of products can constantly generate high profit. For
finding all utility-frequent itemsets, there is no efficient strategy due
to the nonexistence of “downward/upward closure property”. In order
to tackle such challenge, we propose a bottom-up two-phase algorithm,
BU-UFM, for efficiently mining utility-frequent itemsets. We also in-
troduce a novel concept, quasi-utility-frequency, which is upward closed
with respect to the lattice of all itemsets. In fact, each utility-frequent
itemset is also quasi-utility-frequent. A top-down two-phase algorithm,
TD-UFM, for mining utility-frequent itemsets is also presented in the
paper.

1 Introduction

Data Mining has made a profound impact on business practices and knowl-
edge management in recent years. Association Rule Mining (or market basket
analysis), finding interesting association or correlation relationships among data
items, is one of the most important data mining strategies. Since the concept of
association rules was introduced by Agrawal et al. [2] in 1993, many algorithms
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and techniques for mining association rules have been proposed in the litera-
ture. Traditional association rule mining (ARM) model treats all the items in
the database equally by only considering if an item is present in a transaction
or not. ARM focuses on deriving correlations among a set of items and their
association rules.

Although finding correlations of itemsets is very important, frequent itemsets
identified by ARM may only contribute a small portion of the overall utility.
In many situations, people may be more interested in finding out how a set of
items support a specific objective that they want to achieve. Recently, a utility
mining model was defined [17]. The goal of utility mining is to identify high
utility itemsets that drive a large portion of the total utility. Utility mining is
useful in a wide range of practical applications. However, it does not indicate
how often such itemsets appear in the database. There may be some full priced
items or high margin items which are high utility, but only appear in a small
number of transactions. Due to the infrequency, such items may not be beneficial
to the companies consistently.

When companies seek for the combination of products which can constantly
generate high profit, clearly, the association rule mining or the utility mining
will not achieve such task. ARM mines frequent itemsets without knowing the
producing profit. On the other hand, the utility mining seeks high profit items
but no guarantee the frequency. In this paper, we propose a novel utility-frequent
mining model to identify all itemsets that can generate a user specified utility
in each of certain transactions, in which the percentage of such transactions
in database is not less than a minimum support threshold. An utility-frequent
itemset indicates that the combination of items (or products) can constantly
generate high utility (or profit). For finding all utility-frequent itemsets, there is
no efficient strategy due to the nonexistence of “downward/upward closure prop-
erty” (anti-monotone property). In order to tackle such challenge, we propose
a bottom-up two-phase algorithm, called Bottom-Up Utility-Frequent Mining
algorithm (BU-UFM), for efficiently mining utility-frequent itemsets. We also
introduce a novel concept, quasi-utility-frequency, which is upward closed with
respect to the lattice of all itemsets. In fact, each utility-frequent itemset is also
quasi-utility-frequent. Therefore, a top-down approach can be applied to identify
utility-frequent itemsets as well. TD-UFM, a top-down two-phase algorithm,
for mining utility-frequent itemsets is also presented in the paper.

The rest of this article is organized as follows. Section 2 overviews the related
work. In Section 3, we propose the utility-frequent mining model. Section 4
presents the algorithms. Section 5 provides experimental results. Finally, we
conclude in Section 6 with a summary of our work.

2 Related Works

In this section, we review the Support-Confidence Framework and the utility
mining model introduced in [17].
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2.1 Support-Confidence Framework

Association rule mining attempts to discover the interesting relationships among
items in a given a transaction database. The presence of some items in a trans-
action implies the high possibility of other items also appear in the same trans-
action. The formal definition is as follows.

Let I = {i1, i2, . . . , im} be a set of items. Let DB = {T1, T2, . . . , Tn}, the
task-relevant data, be a set of database transactions where each transaction Tj

is a set of items, that is, Tj ⊆ I. A set of items is also referred as an itemset. An
itemset that contains k-items is called a k-itemset. Each transaction is associated
with an identifier, called TID. Let X be an itemset, a transaction T is said
to contain X if and only if X ⊆ T . An association rule is an implication of
the form X ⇒ Y ,where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅. The rule X ⇒ Y
holds in the transaction set DB with support s, where s is the percentage
of transaction in DB that contain X ∪ Y (i.e. both X and Y ). This is taken
to be the probability, P (X ∪ Y ). The rule X ⇒ Y has confidence c in the
transaction set DB, if c is the percentage of transactions in DB containing X
that also contain Y . This is taken to be the conditional probabilities, P (Y |X).
That is, support(X ⇒ Y ) = P (X ∪ Y ) and confidence(X ⇒ Y ) = P (Y |X).

A rule that satisfy a minimum support threshold (min sup) and a minimum
confidence threshold (min conf) is called strong. An itemset is called a frequent
itemset, if it satisfies minimum support.

Apriori, a multiple passes algorithm [3], is the most famous method to discover
frequent itemsets. The Apriori Principle indicates that each subset of a frequent
itemset must be frequent; otherwise the itemset is infrequent. This property is
also called downward closure property or anti-monotone property. In each pass,
Apriori scans a database once and employs the downward closure property to
filter out many useless candidates.

Numerous efficient methods have been proposed to discover frequent itemsets,
such as level-wise algorithms [3], [5], [6], [7] and pattern-growth methods [1], [9],
[8], [14].

2.2 Utility Mining Model

A utility mining model has been proposed to measure how “useful” an itemset is
[17]. It overcomes the shortcomings of traditional association rule mining, which
ignores the sale quantity and price (or profitability) among items in a transaction.
The traditional association rule ming becomes a special case of utility mining
[16].

The following is the definition of a set of terms, given in [17], that leads to
the formal definition of utility mining problem.

– The item count of item ip ∈ I in transaction Tq, c(ip, Tq), is the number of
item ip purchased in transaction Tq. For example, c(A, T1) = 0 c(B, T1) = 0,
and c(C, T1) = 18, in Table 1 (a).

– Each item ip has an associated set of transactions Tip = {Tq ∈ DB| ip ∈ Tq}.
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Table 1. An example of transaction database [15]

(a) The transaction (b) The external (c) The transaction
table utility table utility table
TID A B C D E

T1 0 0 18 0 1
T2 0 6 0 1 1
T3 2 0 1 0 1
T4 1 0 0 1 1
T5 0 0 4 0 2
T6 1 1 0 0 0
T7 0 10 0 1 1
T8 3 0 25 3 1
T9 1 1 0 0 0
T10 0 6 2 0 2

Item eu(ip)
A 3
B 10
C 1
D 6
E 5

TID TU(Tq)
T1 23
T2 71
T3 12
T4 14
T5 14
T6 13
T7 111
T8 57
T9 13
T10 72

– A k-itemset X = {x1, x2, . . . , xk} is a subset of I, where 1 ≤ k ≤ m, xi ∈ I
for all i = 1, 2, . . . , k.

– Each k-itemset X has an associated set of transactions TX = {Tq ∈ DB| X ⊆
Tq}.

– The external utility of item ip ∈ I, eu(ip), is the value associated with item
ip in the external utility table. This value reflects the importance of an
item, which is independent of transactions. For example, in Table 1 (b), the
external utility of item A, eu(A), is 3.

– The utility of item ip ∈ I in transaction Tq, u(ip, Tq), is the quantitative
measure of utility for item ip in transaction Tq, defined as eu(ip) × c(ip, Tq).
For example, u(A, T8) = 3 × 3 = 9.

– The utility of itemset X in transaction Tq, u(X, Tq), is
∑

ip∈X u(ip, Tq),
where X ⊆ Tq. For example, let X = {A, C}, u(X, T8) = 3×3+25×1 = 34.

– The utility of itemset X , u(X), is defined as
∑

X⊆Tq∈DB u(X, Tq). For ex-
ample, let X = {A, C}, u(X) = u(X, T3) + u(X, T8) = 7 + 34 = 41.

– The transaction utility of Tq, TU(Tq), is equal to u(Tq, Tq)=
∑

ip∈Tq
u(ip, Tq).

For example, TU(T1) = 18 × 1 + 1 × 5 = 23.

Utility mining is to find all the itemsets whose utility values are beyond a user
specified threshold. An itemset X is a high utility itemset if u(X) ≥ ε, where X ⊆
I and ε is the minimum utility threshold, otherwise, it is a low utility itemset.
For example, in Table 1, u({A, D, E}) = u({A, D, E}, T4) + u({A, D, E}, T8) =
14 + 32 = 46. If ε = 120 , {A, D, E} is a low utility itemset.

There is no efficient strategy to find all the high utility itemsets due to the
nonexistence of “downward closure property” in the utility mining model. The
challenge of utility mining is in restricting the size of the candidate set and
simplifying the computation for calculating the utility.

An exhaustive search method can be applied to identify all high utility item-
sets. However, such method is too time-consuming and space-consuming to
work well in a large dataset environment. Several heuristic methods have been
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proposed to accelerate discovering high utility itemsets (or share frequent item-
sets), such as MEU [17], SIP, CAC, and IAB [4] methods. Nevertheless, they
may loss some high utility itemsets.

Recently, Li, et al. developed some efficient approaches, including the FSM,
SuFSM, ShFSM, and DCG methods for share mining [11], [12], [13]. In the
meanwhile, Liu, et al. [15] also presented a Two-Phase (TP) algorithm for fast
discovering all high utility itemsets. In fact, under appropriate adjustment on
item count and external utility of items, share mining is equivalent to utility
mining.

3 Utility-Frequent Mining Model

As defined in the previous section, the utility of itemset X in transaction Tq,
u(X, Tq), is defined as

∑
ip∈X u(ip, Tq), where X ⊆ Tq.

For a given utility μ, each itemset X is associated with a set of transactions
T(X,μ) = {Tq ∈ DB| X ⊆ Tq and u(X, Tq) ≥ μ}.

T(X,μ) can be seen as the set of transactions that contain X and generate at
least utility μ on X . The ratio of the size of T(X,μ) and the total number of
transactions is denoted as

support(X, μ) =
|T(X,μ)|
|DB| (1)

Definition 1. For a given utility μ and a given minimum support threshold s,
an itemset X is utility-frequent (U-frequent), if support(X, μ) is not less than s.
Otherwise, X is utility-infrequent.

For example, in Table 1, let X = {A, C}, μ = 20 and s = 20%, then T(X,μ) =
{T8}, where X ⊆ T8 and u(X, T8) = 34 > 20. support(X, μ) = 10% < s,
therefore, X is utility-infrequent.

Utility-frequent mining is to obtain all itemset X , in which the percentage
of transactions, containing X and generating utility value on X beyond a user
specified threshold μ, is greater than or equal to a user specified threshold s.

However, U -frequency is neither upward nor downward closed with respect to
the lattice of all itemsets. For example, in Table 1, let μ = 20 and s = 20%,
T({C},μ) = {T8}, T({C,E},μ) = {T1, T8} and T({C,D,E},μ) = {T8}. Since |DB| = 10,
support({C}, μ) = support({C, D, E}, μ) = 10% and support({C, E}, μ) = 20%.
{C, E} is utility-infrequent, however, neither {C} nor {C, D, E}. Therefore, U -
frequency is neither upward nor downward closed.

Similar to the utility mining model, the challenge of utility-frequent mining is
also in restricting the size of the candidate set and simplifying the computation
for calculating the supports.

First, we observe the following important property on utility-frequent item-
sets.
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Theorem 1. If itemset X is utility-frequent, X is also frequent.

Proof: For a given utility μ and a threshold s, clearly, T(X,μ) = {Tq ∈ DB| X ⊆
Tq and u(X, Tq) ≥ μ} ⊆ {Tq ∈ DB| X ⊆Tq}=TX . support(X) ≥ support(X, μ).
If X is U-frequent, support(X, μ) ≥ s, so, support(X) ≥ s. Therefore, X is
frequent. 
�
On the other hand, we give an extended definition of utility-frequent, called
quasi-utility-frequent in the follows.

For a given utility μ, each itemset X is associated with a set of transactions
T ′

(X,μ) = {Tq ∈ DB|
∑

ip∈X u(ip, Tq) ≥ μ}. Note that, X contained in Tq is not
necessary. In Table 1, consider X = {A, C, E} and μ = 20,

∑
ip∈X u(ip, T1) =

u(A, T1) + u(C, T1) + u(E, T1) = 0 × 3 + 18 × 1 + 1 × 5 = 23 > μ. Accordingly,
T1 ∈ T ′

({A,C,E},20). T ′
(X,μ) can be seen as the set of transactions that generate

at least utility μ on X . The ratio of the size of T ′
(X,μ) and the total number of

transactions is denoted as

Qsupport(X, μ) =
|T ′

(X,μ)|
|DB| (2)

Definition 2. For a given utility μ, an itemset X is quasi-utility-frequent (QU-
frequent), if Qsupport(X, μ) ≥ s, where s is the user specified threshold.

Theorem 2. QU-frequency is upward closed with respect to the lattice of all
itemsets.

Proof: For a given utility μ and a threshold s, let X and Y be subsets of
I, X ⊆ Y and X be QU-frequent. For any Tq in T ′

(X,μ),
∑

ip∈Y u(ip, Tq) =
∑

ip∈Y −X u(ip, Tq) +
∑

ip∈X u(ip, Tq) ≥ μ, then Tq is also in T ′
(Y,μ). Therefore,

|T ′
(Y,μ)| ≥ |T ′

(X,μ)|, Qsupport(Y, μ) ≥ Qsupport(X, μ) ≥ s. By definition, Y is
QU-frequent. 
�
Moreover, we have the following theorem.

Theorem 3. If itemset X is utility-frequent, X is also quasi-utility-frequent.

Proof: Given an utility μ and a threshold s, for any Tq ∈ T(X,μ), by definition,
Tq ⊇ X , so that

∑
ip∈X u(ip, Tq) = u(X, Tq) ≥ μ. Accordingly, Tq ∈ T ′

(X,μ). In
addition, Qsupport(X, μ) ≥ support(X, μ). If X is U-frequent, support(X, μ) ≥
s, then Qsupport(X, μ) ≥ s. Therefore, X is QU-frequent. 
�

For example, in Table 1, let μ = 20 and s = 20%, T ′
({C,D,E},μ) = {T1, T8},

T ′
({C,E},μ) = {T1, T8} and T ′

({C},μ) = {T8}. Qsupport({C, D, E}, μ) = Qsupport

({C, E}, μ) = 20% and Qsupport({C}, μ) = 10%. {C, D, E} and {C, E} is
QU-frequent, however, {C} is not.

Figure 1 and Figure 2 illustrate the inclusion relationships between frequent
itemsets and utility-frequent itemsets, and between quasi-utility-frequent item-
sets and utility-frequent itemsets, respectively. The set of utility-frequent item-
sets, {B, BD, BE, CE, BDE}, is a subset of both the set of frequent itemsets
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Fig. 1. Itemsets lattice related to the example in Table 1 with μ = 20 and s = 20%.
Itemsets in gray-shaded boxes are frequent. Itemsets in circles are utility-frequent.
Numbers in each box are “support count/utility support count (|TX |/|T(X,μ)|)”.
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Fig. 2. Itemsets lattice related to the example in Table 1 with μ = 20 and s = 20%.
Itemsets in gray-shaded boxes are quasi-utility-frequent. Itemsets in circles are utility-
frequent. Numbers in each box are “quasi-utility support count/utility support count
(|T ′

(X,μ)|/|T(X,μ)|)”.

and the set of quasi-utility-frequent itemsets. Based on the above observation,
we are able to develop a bottom-up and a top-down two-phase utility mining
algorithms in the next section.

4 Algorithms

Intuitively, an exhaustive search algorithm can extract all utility-frequent item-
sets. For a transaction database with n distinct items, the algorithm must gen-
erate 2n possible itemsets that is impractical.
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To avoid generating too many candidates, this study proposes a bottom-
up two-phase algorithm to discover utility-frequent itemsets called Bottom-Up
Utility-Frequent Mining BU-UFM algorithm. According to Theorem 1, each
utility-frequent itemset is also frequent. In the first phase, Apriori algorithm is
employed to discover all frequent itemsets. In the second phase, BU-UFM scan
database once to check whether each frequent itemset is utility-frequent. The
pseudo-code of BU-UFM is as follows:

Algorithm: BU-UFM. Discover all utility-frequent itemsets.
Input: Database DB; minimum utility threshold μ;

minimum support threshold s.
Output: UFI , utility-frequent itemsets in DB.
Method:
//Phase I
(1) UFI = ∅;
(2) CandidateSet = Apriori(DB, s);
//Phase II
(3) foreach candidate c ∈ CandidateSet {
(4) foreach transaction T ∈ DB { //scan database
(5) if( c ⊆ T and u(c, T ) < μ){
(6) c.count − −;} } }
(7) foreach candidate c ∈ CandidateSet {
(8) if (c.count ≥ s) {
(9) UFI := UFI + c;} }
(10) return UFI ;

On the other hand, according to Theorem 2, we can utilize the upward closure
property on the quasi-utility-frequent itemsets. We first propose an Apriori-like
algorithm, QUF-Apriori, for the quasi-utility-frequent itemset mining. The
following is the detailed algorithm.

Algorithm: QUF-Apriori. Find quasi-utility-frequent itemsets using an
iterative level-wise approach based on candidate generation.

Input: Database DB; minimum utility threshold μ;
minimum support threshold s.

Output: QUFI , quasi-utility-frequent itemsets in DB.
Method:
(1) Lm−1 = find quasi-utility-frequent (m − 1)-itemsets(DB, μ, s);

// m is the size of I .
(2) for(k = 2; Lm−k+1 �= ∅; k + +){
(3) Cm−k = apriori gen(Lm−k+1);
(4) foreach candidate c ∈ Cm−k { //scan DB for count
(5) foreach transaction T ∈ DB {
(6) if( u(c, T ) ≥ μ) {
(7) c.count + +; } } }
(8) Lm−k = {c ∈ Cm−k | c.count ≥ s}; }
(9) return QUFI =

⋃
m−k Lm−k;
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procedure find quasi-utility-frequent (m − 1)-itemsets (
DB : database; μ : utility; s : minimum support threshold)

(1) foreach item i ∈ I {
(2) {i} = I − {i}; //(m − 1)-itemset
(3) foreach transaction T ∈ DB {
(4) if( u({i}, T ) ≥ μ) {
(5) {i}.count + +; } } }
(6) Lm−1 = {{i} | {i}.count ≥ s};
(7) return Lm−1;

According to Theorem 3, the complete set of utility-frequent itemsets is a
subset of quasi-utility-frequent itemsets. Now, we propose Top-Down Utility-
Frequent Mining algorithm (TD-UFM). In Phase I, we utilize QUF-Apriori
algorithm to discover the complete set of quasi-utility-frequent itemsets. We
prune those overestimated itemsets in Phase II. The detailed algorithm is as
follows.

Algorithm: TD-UFM. Discover all utility-frequent itemsets.
Input: Database DB; minimum utility threshold μ;

minimum support threshold s.
Output: UFI , utility-frequent itemsets in DB.
Method:
//Phase I
(1) CandidateSet = QUF-Apriori(DB, μ, s);
//Phase II
(2) foreach candidate c ∈ CandidateSet { //scan DB for count
(3) foreach transaction T ∈ DB {

//calcuate the utility value of c in T for c ⊆ T
(4) if( c ⊆ T and u(c, T ) ≥ μ){
(5) c.count + +; } } }
(6) UFI = {c ∈ CandidateSet | c.count ≥ s};
(7) return UFI ;

5 Experimental Results

All the experiments were performed on an AMD K8 3500+ (2200 MHz) PC
with 1 GB main memory, running the Windows XP Professional operating sys-
tem. The BU-UFM algorithm was implemented in Visual C++ 6.0 and ap-
plied to several synthetic datasets. The two datasets T10.I6.D1000k.N1000 and
T20.I6.D1000k.N1000 was generated from the IBM synthetic data generator [10].

The item count of each item in the two datasets were randomly generated
between one and four. Observed from real world databases, most items are in
the low profit range. Therefore, the external utility of each item was heuristi-
cally chosen between 0.01 and 10 and randomly generated with a log-normal
distribution.

To choose appropriate minimum utility thresholds in the experiments, instead
of randomly selecting μ, we pick different ratios of the average of transaction
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Fig. 3. Running times of BU-UFM on T10.I6.D1000k.N1000 and T20.I6.D1000k.
N1000 for five minimum support thresholds

Table 2. Itemsets number comparison between utility-frequent itemsets and frequent
itemsets

Dataset
Support threshold (s)

/ATU 5% 10% 15% 20% 25% 30%
Frequent itemset size UFk UFk UFk UFk UFk UFk

k = 1 616 402 255 157 109 84 848
k = 2 1575 830 416 212 90 45 2106
k = 3 38 18 5 1 0 0 49
k = 4 5 5 4 2 0 0 5
k 5 0 0 0 0 0 0 0

Dataset
Support threshold (s)

/ATU 5% 10% 15% 20% 25% 30%
Frequent itemset size UFk UFk UFk UFk UFk UFk

k = 1 428 185 93 54 29 16 859
k = 2 4587 1573 503 176 45 14 9037
k = 3 109 23 1 0 0 0 205
k = 4 253 62 4 0 0 0 339
k = 5 422 161 15 0 0 0 462
k = 6 462 217 14 0 0 0 462
k 7 0 0 0 0 0 0 0

T20.I6.D1000k.N1000
0.28%

Fk

T10.I6.D1000k.N1000
0.16%

Fk

utility (ATU) in database. For example, in Table 1, μ = 20 is equal to 50% of
the average of transaction utility (ATU), where the total utility of the database
is 400 and the average of transaction utility is 40.

Figure 3 appears the running time performances of BU-UFM on both
datasets T10.I6.D1000k.N1000 and T20.I6.D1000k.N1000. The x-axis value in-
dicates the percentage of utility threshold to the average of transaction utility
in database. A high minimum support threshold resulted in a short running
time. For a certain minimum support threshold, the process of Phase I was
identical over different utility thresholds, since Phase I is a traditional frequent
itemset mining. The parameter of utility threshold almost had no influence the
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performance, since Phase II checked which candidates were utility-frequent. The
running time of Phase II was relatively small. Therefore, the distinction of run-
ning time performances over various utility thresholds was insignificant.

Table 2 lists the number of utility-frequent itemsets and frequent itemsets with
different item sizes on both T10.I6.D1000k.N1000 and T20.I6.D1000k.N1000 for
several several distinct percentages of utility thresholds to ATU .

6 Conclusion

Utility measures the total utility derived from itemsets in a database. It does
not indicate how often such itemsets appear in the database. We proposed a
novel utility-frequent mining model to identify all itemsets that can generate
a user specified utility in transactions, in which the percentage of such trans-
actions in database is greater than or equal to a user specified threshold. We
proposed a bottom-up two-phase algorithm, BU-UFM, for efficiently mining
utility-frequent itemsets. We also introduced quasi-utility-frequent which is up-
ward closed with respect to the lattice of all itemsets. Since each utility-frequent
itemset is also quasi-utility-frequent, therefore, a top-down approach can be
applied to identify utility-frequent itemsets as well. In the future, we will investi-
gate more on the relationship among frequent, utility-frequent, and quasi-utility-
frequent itemsets. We believe that a combination of top-down and bottom-up
approach can more accelerate the mining process on utility-frequent itemsets.
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